

Unterschiedliche Öl- und Fettquellen in Rationen für schnell wachsende Masthühner: Auswirkungen auf Leistungs- und Schlachtkörpermerkmale

Reinhard Puntigam¹, Christin Heidemann², Céline Heinemann², Ralph Schemmer³

¹ Fachhochschule Südwestfalen, Soest, Deutschland; ² Institut für Tierwissenschaften, Universität Bonn, Deutschland; ³ BEWITAL agri GmbH & Co. KG, Südlohn-Oeding, Deutschland

Einführung

Öle und Fette spielen in der Tierernährung eine wichtige Rolle. Sie erfüllen mehrere wichtige Funktionen und sind ein wesentlicher Bestandteil zur Erhöhung der Energiedichte des Futters. Das Futter für Masthähnchen muss hoch verdaulich und energiereich sein, um ein schnelles Wachstum und eine hochwertige Fleischerzeugung innerhalb einer kurzen Aufzuchtperiode zu gewährleisten. Um diesen Bedarf zu decken, werden relativ hohe Mengen an Futterfetten zugesetzt. Um eine konstante Pelletqualität zu gewährleisten, können sprühgekühlte Fettpulver als perfekte Alternative zu flüssigen Ölen oder Fettsäuremischungen verwendet werden. Die Verdaulichkeit der Öle und Fette wird durch ihre Herkunft (tierisch oder pflanzlich) sowie durch ihre spezifische Fettsäurezusammensetzung beeinflusst. Darüber hinaus kann die Art des Fetts den Fettstoffwechsel und die Fettablagerung im Körper beeinflussen. Ziel der vorliegenden Studie war es daher, die Auswirkungen von drei verschiedenen Fett- und Ölquellen auf Leistungs- und Schlachtkörpermerkmale von schnell wachsenden Masthühnern zu bestimmen.

Material und Methoden

- 198 eintägige männliche Masthühner (Ross 308; 48± 4,2 g) wurden auf 18 Buchten (je 11 Tiere) verteilt.
- Die 18 Buchten (6 Wiederholungen pro Versuchsgruppe, 66 Tiere pro Gruppe) wurden auf drei Futtergruppen (FG) verteilt
- Varianten und Zeitplan:

Tag 1-10: Starterfutter (alle FG)

Tag 11-23: Grower Ration

FG1: Grundmischung (GM) + 3,6 % Sojaöl FG2: GM+ 3,6 % BEWI-SPRAY® 99 L FG3: GM+ 1,0 % BEWI-FATRIX® SynerG+

+ 2,8 % **BEWI-SPRAY**® 99 L

FG1: GM + 3,4 % Sojaöl

Tag 24-35: Finisher Ration

FG2: GM + 3,4 % **BEWI-SPRAY**® 99 L FG3: GM + 1,0 % **BEWI-FATRIX**® SynerG+ + 2,6 % **BEWI-SPRAY**® 99 L

Tabelle 1: Berechnete chemische Zusammensetzung der Grundmischung (g/kg TM)

Grundmischung	Grower Ration	Finisher Ration
Rohprotein	210	196
Rohfett	33,1	33,7
Rohasche	50,6	44,4
Rohfaser	27,5	26,8
AME _N (MJ/kg)	11,6	11,9
Stärke	369	424
Calcium	6,9	5,8
Phosphor	4,9	4,2
Lysin	12,6	11,5
Methionin	6,0	5,6

Ergebnisse

Tabelle 2: Ergebnisse der verschiedenen Fettquellen auf die zootechnische Leistung der Masthähnchen

	FG1	FG2	FG3	SEM	p-Wert		
Lebendgewicht, g							
Tag 10	411	410	417	2,64	0,443		
Tag 23	1522	1544	1570	10,29	0,152		
Tag 35	3020	3016	3086	19,68	0,270		
tägliche Zunahmen, g/d							
Tag 0-10	36	36	37	0,25	0,456		
Tag 11-23	85	87	89	0,67	0,142		
Tag 24-35	125	123	126	1,11	0,409		
Futteraufwand, kg/kg							
Tag 10	1,00	1,01	0,98	0,02	0,729		
Tag 11-23	1,25	1,22	1,27	0,02	0,400		
Tag 24-35	1,53	1,46	1,48	0,02	0,519		

FG, Futtergruppe; SEM, Standardfehler.

Tabelle 3: Ergebnisse der verschiedenen Fettquellen auf die Schlachtleistung und die Schlachtkörpermerkmale von Masthähnchen (am Tag 35)

	FG1	FG2	FG3	SEM	p-Wert
Lebendgewicht, g (nüchtern)	2935	2934	2996	19,28	0,323
Ausschlachtung, %	73,3 ^b	73,9 ^{ab}	74,5a	0,14	0,002
Leber, g	43,7	43,0	43,7	0,40	0,675
Schlachtkörpergewicht, g	2138 ^b	2221 ^{ab}	2277 a	16,94	0,002
Brust, g	675 ^b	746 ^a	747 a	10,34	0,002
Brust, %	31,5 ^b	33,6a	32,8 ^{ab}	0,33	0,021
Schenkel, g	600	594	601	6,87	0,913
Flügel, g	219	220	231	2,26	0,061

a,b Werte innerhalb einer Zeile mit unterschiedlichen Hochbuchstaben unterscheiden sich signifikant (p \leq 0,05); FG, Futtergruppe; SEM, Standardfehler.

Schlussfolgerung

- Die Deckung des Energiebedarfs (AME_N) in der Hähnchenmast durch Fett- und Ölquellen ist entscheidend für die Optimierung der Mastleistung und damit für den wirtschaftlichen Erfolg.
- Die Verwertung der Fettquellen wird von zahlreichen Faktoren beeinflusst, wie z.B. dem Alter der Tiere, der Einsatzrate sowie physikalischen Aspekten wie der Quelle, der Qualität und der Partikelgröße der eingesetzten Fette.
- Die Zugabe von **BEWI-SPRAY® 99L** in Kombination mit **BEWI-FATRIX® SynerG+** führte zu einer höheren Ausschlachtung und einem höheren Schlachtkörpergewicht. **BEWI-SPRAY® 99L**, sowohl allein als auch in Kombination mit **BEWI-FATRIX® SynerG+** führte zu einem höheren Brustfleischgewicht.

Literatur

Pesti, G. M., Bakalli, R. I., Qiao, M., Sterling, K. G. (2002). Ein Vergleich von acht Fettsorten als Futterzusatz für Masthähnchen. Poult. Sci. 81:382-390.
Ravindran, V., Tancharoenrat, P., Zaefarian, F., Ravindran, G. (2016). Fette in der Geflügelernährung: Verdauungsphysiologie und Faktoren, die ihre Verwertung beeinflussen.

Anim. Feed Sci. Technol. 213: 1-21.
Tancharoenrat, P., Ravindran, V., Zaefarian, F., & Ravindran, G. (2013). Einfluss des Alters auf die scheinbar verstoffwechselbare Energie und die scheinbare Fettverdaulichkeit verschiedener Fettquellen bei Masthähnchen. Anim. Feed Sci. Technol. 186 (3-4): 186-192

Autor: Dr. Ralph Schemmer
BEWITAL agri GmbH & Co. KG
Industriestraße 10
DE-46354 Südlohn-Oeding
E-Mail: r.schemmer@bewital.de